3.7.76 \(\int \sqrt {e \cos (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx\) [676]

Optimal. Leaf size=36 \[ -\frac {2 i \sqrt {e \cos (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \]

[Out]

-2*I*(e*cos(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]
time = 0.09, antiderivative size = 36, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 30, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.067, Rules used = {3596, 3569} \begin {gather*} -\frac {2 i \sqrt {a+i a \tan (c+d x)} \sqrt {e \cos (c+d x)}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[e*Cos[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-2*I)*Sqrt[e*Cos[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d

Rule 3569

Int[((d_.)*sec[(e_.) + (f_.)*(x_)])^(m_.)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[b*(d*
Sec[e + f*x])^m*((a + b*Tan[e + f*x])^n/(a*f*m)), x] /; FreeQ[{a, b, d, e, f, m, n}, x] && EqQ[a^2 + b^2, 0] &
& EqQ[Simplify[m + n], 0]

Rule 3596

Int[(cos[(e_.) + (f_.)*(x_)]*(d_.))^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_.), x_Symbol] :> Dist[(d*Co
s[e + f*x])^m*(d*Sec[e + f*x])^m, Int[(a + b*Tan[e + f*x])^n/(d*Sec[e + f*x])^m, x], x] /; FreeQ[{a, b, d, e,
f, m, n}, x] &&  !IntegerQ[m]

Rubi steps

\begin {align*} \int \sqrt {e \cos (c+d x)} \sqrt {a+i a \tan (c+d x)} \, dx &=\left (\sqrt {e \cos (c+d x)} \sqrt {e \sec (c+d x)}\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {e \sec (c+d x)}} \, dx\\ &=-\frac {2 i \sqrt {e \cos (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 0.19, size = 36, normalized size = 1.00 \begin {gather*} -\frac {2 i \sqrt {e \cos (c+d x)} \sqrt {a+i a \tan (c+d x)}}{d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[e*Cos[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]],x]

[Out]

((-2*I)*Sqrt[e*Cos[c + d*x]]*Sqrt[a + I*a*Tan[c + d*x]])/d

________________________________________________________________________________________

Maple [A]
time = 1.08, size = 45, normalized size = 1.25

method result size
default \(-\frac {2 i \sqrt {e \cos \left (d x +c \right )}\, \sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}}{d}\) \(45\)
risch \(-\frac {2 i \sqrt {2}\, \sqrt {e \cos \left (d x +c \right )}\, \sqrt {\frac {a \,{\mathrm e}^{2 i \left (d x +c \right )}}{{\mathrm e}^{2 i \left (d x +c \right )}+1}}}{d}\) \(46\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x,method=_RETURNVERBOSE)

[Out]

-2*I/d*(e*cos(d*x+c))^(1/2)*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 75 vs. \(2 (28) = 56\).
time = 0.56, size = 75, normalized size = 2.08 \begin {gather*} -\frac {2 i \, \sqrt {a} \sqrt {-\frac {2 i \, \sin \left (d x + c\right )}{\cos \left (d x + c\right ) + 1} + \frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1} e^{\frac {1}{2}}}{d \sqrt {-\frac {\sin \left (d x + c\right )^{2}}{{\left (\cos \left (d x + c\right ) + 1\right )}^{2}} - 1}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="maxima")

[Out]

-2*I*sqrt(a)*sqrt(-2*I*sin(d*x + c)/(cos(d*x + c) + 1) + sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1)*e^(1/2)/(d*s
qrt(-sin(d*x + c)^2/(cos(d*x + c) + 1)^2 - 1))

________________________________________________________________________________________

Fricas [A]
time = 0.34, size = 51, normalized size = 1.42 \begin {gather*} -\frac {2 i \, \sqrt {2} \sqrt {\frac {1}{2}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {e^{\left (2 i \, d x + 2 i \, c\right )} + 1} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c + \frac {1}{2}\right )}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="fricas")

[Out]

-2*I*sqrt(2)*sqrt(1/2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(e^(2*I*d*x + 2*I*c) + 1)*e^(1/2*I*d*x + 1/2*I*c
+ 1/2)/d

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \sqrt {e \cos {\left (c + d x \right )}} \sqrt {i a \left (\tan {\left (c + d x \right )} - i\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))**(1/2)*(a+I*a*tan(d*x+c))**(1/2),x)

[Out]

Integral(sqrt(e*cos(c + d*x))*sqrt(I*a*(tan(c + d*x) - I)), x)

________________________________________________________________________________________

Giac [A]
time = 0.69, size = 18, normalized size = 0.50 \begin {gather*} -\frac {2 i \, \sqrt {a} e^{\left (\frac {1}{2} i \, d x + \frac {1}{2} i \, c + \frac {1}{2}\right )}}{d} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cos(d*x+c))^(1/2)*(a+I*a*tan(d*x+c))^(1/2),x, algorithm="giac")

[Out]

-2*I*sqrt(a)*e^(1/2*I*d*x + 1/2*I*c + 1/2)/d

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \sqrt {e\,\cos \left (c+d\,x\right )}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cos(c + d*x))^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2),x)

[Out]

int((e*cos(c + d*x))^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2), x)

________________________________________________________________________________________